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1. INTRODUCTION

Fluid–structure coupling vibration widely exists in nature, e.g., the mutual actions between
the vibrant elastic wings of a plane and the surrounding unsteady air, a flickering bird’s
wings and the surrounding air, a large-scale flexible architectural structure and the
surrounding air, etc. The interaction of elastic structure and oscillating flow field is
frequently encountered in engineering. Liu et al. [1] proposed a hybrid numerical method
for studying elastic stress waves in a composite laminate subjected to a plane shock wave.
Xi et al. [2] and Liu et al. [3] proposed a strip element method to analyze the wave
scattering by a crack in a fluid-filled composite cylindrical shell and in an immersed
composite laminate. Liu et al. [4] proposed an analytical method to analyze elastodynamic
response of an immersed composite laminate subjected to a Gaussian beam pressure.
Gorman et al. [5] have studied the vibration of a flexible pipe conveying viscous pulsating
fluid flow. The unsteady aerodynamic forces acting on the elastic airfoil or cascade and the
dynamic responses of airfoil or blades were evaluated using a numerical method by Kim
and Lee [6], Hsu and Chen [7], Taylor and Vezza [8] and Takahara and Masuzawa [9].

There are some analytical solutions to the dynamic problems of some simple or
simplified elastic structure and some analytical solutions to the dynamic problems of some
simplified oscillating flow field [10]. However, the coupling dynamic oscillation of fluid–
structure is much more complex. So far, even for the simplest model of fluid–structure, the
analytical solution cannot be found in references.

In this article, an analytical solution will be given for a simplified model of fluid–
structure system. The analytical solution is helpful to understand some essential, inherent
and important characteristics of the fluid–structure system, and can also be used to verify
the results of numerical simulation to this kind of problems.

2. FLUID–STRUCTURE COUPLING RELATIONSHIP

When steady flow field is still, the governing equations, given by Chen [10], can describe
the dynamic movement for a one-dimensional oscillating ideal gas under small disturbance
as follows:
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where #uu; #rr; #pp are the oscillating velocity, oscillating density and, oscillating pressure
respectively. *rr is the steady density, *pp steady pressure and g the specific heat ratio. Huang
[11] gives the following analytical solutions to equation (1):
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X

i

ðCi cos rix þ Di sin rixÞcosoit;

#rr ¼

ffiffiffiffiffi
*rr3
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s X
i
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where oi is the frequency of the ith oscillating component, Ci, Di are constants of the ith
oscillating component, which are fixed by the boundary conditions of the beginning and
the end of the one-dimensional flow field. ri is used to present oi

ffiffiffiffiffiffiffiffiffiffi
*rr=g *pp

p
; that is, ri ¼

oi

ffiffiffiffiffiffiffiffiffiffi
*rr=g *pp

p
:

In Figure 1, E and F are ideal sliding boards with one unit area, mass m respectively. G,
a simplified model of one-dimensional flexible structure, is made up of board F and the
connected spring. The dynamic response of board F can be described by the following
equation:

m .xxF þ k1xF ¼ #pp; ð3Þ

where k1 is the rigidity of structure G. The balance position of F is x0, and xF is the relative
displacement to x0.

It is very clear that at the interface of one-dimensional ideal flow field and the sliding
board E or F, the oscillating velocity and acceleration of flow field are equal to the
vibrating velocity and acceleration of board E and F at their relevant frequencies
respectively.

When board E is moving, its vibration can be regarded as the superposition of some
simple harmonic vibrations; thus,

xE ¼
P

i Ai sinoit;

uE ¼
P

i oitAi cos oit;
ð4Þ

where Ai is the amplitude of vibration of ith oscillating component, oi is the frequency of
the ith oscillating component, and xE is the displacement of board E.

Substituting equation (4) into equations (2), and omitting the second order small quantity,

Ci ¼ Aioi: ð5Þ

From equation (2), the oscillation pressure at any position of the flow field can be written as

#pp ¼
ffiffiffiffiffiffiffiffi
g *pp *rr

p X
i

ðAioi sin rix � Di cos rixÞ sinoit: ð6Þ
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Figure 1. Sketch map of a simplified model for the fluid–structure system.
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When the vibration of board E is small, the oscillating pressure on board F is obtained,
neglecting the second order small quantity on board F.

#pp ¼
ffiffiffiffiffiffiffiffi
g *pp *rr

p X
i

ðAioi sin rix0 � Di cos rix0Þsinoit: ð7Þ

By integrating and differentiating the oscillating velocity #uu of equation (2), the displacement
and acceleration of the flow field on board F are shown as

xF ¼
X

i

ðAioi cos rix0 þ Di sin rix0Þ
oi

sinoit;

.xxF ¼ �
X

i

oiðAioi cos rix0 þ Di sin rix0Þsinoit: ð8Þ

Substituting equations (7) and (8) into equation (3),

Di ¼
Aioi k1 cos rix0 � mo2

i cos rix0 � oi

ffiffiffiffiffiffiffiffi
g *pp *rr

p
sin rix0

� �
mo2

i sin rix0 � oi

ffiffiffiffiffiffiffiffi
g *pp *rr

p
cos rix0 � k1 sin rix0

: ð9Þ

So far, the vibrating velocity, acceleration and pressure of any position in flow field according
to equation (2) can be known, and also the dynamic response of board F from equation (3).
As shown in equation (9), the rigidity and mass of the simplified structure G influence the
oscillating flow field. Also, any change in these parameters of geometry (x0), unsteady density
and pressure of fluid can bring exciting force to the simplified structure G, and result in a
change of its dynamic characteristics. Hence, it is a coupling system.

3. ANALYSIS AND DISCUSSION

(1) For cos rix0 ¼ 0:
From equation (9),

Di ¼
�o2

i

ffiffiffiffiffiffiffiffi
g *pp *rr

p
Ai

mo2
i � k1

:

It is obvious that if mo2
i � k1 ¼ 0; then Di!1; the inherent frequency of the fluid–

structure coupling system is just the same as that of the structure G ðoF ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
Þ; and

not relative to the parameters of oscillating flow field.
(2) For sin rix0 ¼ 0:

From equation (9),

Di ¼
Ai k1 � mo2

i

� �
�

ffiffiffiffiffiffiffiffi
g *pp *rr

p :

This is an interesting result. When the disturbance frequency oi equals the inherent
frequency of structure oF ; Di ¼ 0: If the disturbance frequency oi is not equal to the
inherent frequency of structure oF ; Di is a limited value, which is relative to the mass and
rigidity of the simplified structure and parameters of steady flow field. In this case, the
fluid–structure system does not have inherent frequency in the usual sense. There is no
resonance in the system, no matter what frequency of exciting force is used to stimulate the
fluid–structure system. This can be called a super-steady system. For the fluid–structure
system, it is an important discovery and can be used to guide in the design of a stabile
system. In practical engineering, sin rix0 should be as near zero as possible.
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(3) For sin rix0=0 and cos rix0=0:
If the denominator of equation (9) is zero, Di!1; namely,

mo2
i sin rix0 � oi

ffiffiffiffiffiffiffiffi
g *pp *rr

p
cos rix0 � k1 sin rix0 ¼ 0: ð10Þ

Equation (10) is non-linear. With the method of Newtonian iteration, the solutions ðo0
iÞ of

oi can be obtained. If o
0
i50; it is obviously nonsense, since the frequency of disturbance

cannot be negative. So for oi ¼ o
0
i > 0; o

0
i is the inherent frequency of this system, Di!1:

According to equations (2) and (3), the oscillation of flow and the vibration of structure
become infinity, and the system is unstable. This frequency is not only relative to the mass
and rigidity of the simplified structure, but also to the fluid parameters and geometric
conditions. Thus, the system’s inherent frequency cannot be simply regarded as only
relative to inherent frequency of the simplified structure in this case.

4. CONCLUDING REMARKS

With mathematic deduction, an analytical solution to fluid–structure coupling
oscillation in one-dimensional ideal condition under small disturbance is acquired. Some
interesting and essential characteristics of fluid–structure coupling system oscillation are
found. In general, for sin rix0=0 and cos rix0=0; the fluid–structure coupling system has a
natural frequency that is not only related to the natural frequency of the solid elastic
structure but also to the conditions of flow and geometric parameters. In some special
conditions of cos rix0 ¼ 0; the coupled natural frequency is only relative to that of the
solid elastic structure. For sin rix0 ¼ 0; there is no natural frequency in general for the
system in this case, namely resonance does not occur. The above analytical solution and
discovery are not only important to the theory of fluid–structure coupling oscillation, but
can also be used as a standard solution to verify numerical solution for a number of actual
fluid–structure coupling systems.
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